Particle Identification with DIRC

Vasilii Shelkov

Lawrence Berkeley National Laboratory

BaBar Collaboration

Major topics

Construction and design

Operations

Particle Identification

May 2000, Elba Italy Vasia Shelkov, LBL

Basic principles

DIRC is a 3D device

• DIRC is measuring photon arrival time at PMT position

• expected uncertainties (ideal detector and no background):

• expected uncertainties (ideal detector and no background):
$$\Delta\theta^{2}_{C} = \Delta\theta^{2}_{C,track} + \Delta\theta^{2}_{C,dispersion} + \Delta\theta^{2}_{C,transport} + \Delta\theta^{2}_{C,imaging} + \Delta\theta^{2} \sim (9.8 \text{ mrad})^{2}$$
per photon:
$$\Delta t^{2} \sim \Delta t^{2}_{PMT} \sim (1.5 \text{ ns})^{2}$$

per track:
$$\Delta\theta^{\text{track}}_{\text{C}} \sim \Delta\theta^{\text{photon}}_{\text{C}}/\text{sqrt}(N_{\text{photons-per-track}})$$
, $N_{\text{photons-per-track}} \sim 30$

DIRC inside BaBar

DIRC with open doors

Major detection components

Radiator and light guide:

12 bar boxes with 144 4.9 meter long fused silica bars with n = 1.47, at 442nm bulk transmission is $(99.9\pm0.1)\%/m$, surfaces reflectivity is $(99.96\pm0.01)\%$ All bar boxes were installed by October 1999

Stand Off Box with PMTs:

10752 ELT9125 phototubes(28mm diameter) with Rhodium coated plastic light catchers, 10⁷ gain, 30% eff. at 442nm, time resolution is 1.5ns

after 1.5 years operations in water 99.63% PMTs are "alive and kicking"!!!

Event display

Major operations components

Life support systems:

- DIRC HV and LV system
- water purification plant(transparency control)
- N₂ circulation and water leak detection system
- emergency water dump system
- CsI background sensors and shielding

DIRC DAQ:

• 12 VME crates, 168 DFBs, 12 DCCs, 6 ROMs

BaBar Dataflow system

Data quality control:

- fast monitoring(no reco)
- detailed monitoring(after reco)
- daily online calibrations

PID extraction:

- timing & T_0 calibration constants
- alignment
- θ_c reconstruction algorithms

DAQ+alarm handler + fast monitoring + online calibrations are done by BaBar shifters – no DIRC shifters on duty!

Online LED Calibrations

Using 12 LED light pulsers & 6 Power PC based ROMs, we do <u>fast</u>(daily 3-4 minutes) online calibrations of <u>electronics gain</u>, <u>photon occupancy</u>, <u>TDC</u>, and <u>ADC</u> spectra shapes. Fit parameters for each channel are stored in the Conditions DB and currently used for reconstruction

Offline Datastream Calibrations

Using reconstructed data accumulated over each ~ 20 hours time period of datataking one can fit photon time spectra extracting calibrations constants which lead to 10-15% improvement(over online T0s) in timing resolution. These "ultimate" T^0 constants will be used for reco. in the future.

Stability and importance of T0 calibrations

Photon time resolution before and after corrections

PEPII luminosity

L1 trigger rate: ~600Khz, with 200ns jitter

L3 trigger rate: ~70Hz , raw event size: 25-30Kbytes

Bunch-to-bunch spacing: ~4.2 - 8.4ns

Peak Luminosity: $\sim 2x10^{33}$, datataking rate ~ 100 pb/day

Background rates and monitoring

- rates above 200kHz per tube start causing FEE deadtime
- background rates are dominated by Low Energy
 Ring current and studied by an array of CsI sensors
- temporary shielding around Q4 magnet showed significant reduction of background levels
- permanent lead shielding is under construction affects DAQ, not reconstruction!

Run Number

Fast Monitoring

• continues monitoring of the data quality before reconstruction

Detailed Monitoring

In this view, r is the Cerenkov angle of the photons, ϕ is the angle of the photons wrt the bar axis

Reconstruction

After we've "sharpened our weapons" we can try to reconstruct events:

Vasia Shelkov, LBL

Reconstruction Algorithm

• Calculate unbiased likelihood for observed photons to originate from track or background: (Proba(θ_c), Proba(time), Proba(Nc));

($Proba(\theta_C)$, Proba(time), Proba(Nc));

• Provide likelihood, S/B for $e/\mu/\pi/K/p$ hypotheses

• two main algoritms:

1) GlobLikel

Global event likelihood calculated for entire event, iterative process, provides likelihood for 5 hypotheses for each track.

2) DrcMaxLikelihood

- Track based likelihood per track:
- $\theta_{\rm C}$,
- B/S ratio (yielding number of signal,
- background photons from the total number of associated photons)
- the track center coordinates (xC, yC)

DIRC and combined PID

$$L = L_{svt} L_{dch} L_{dirc}$$

PID impact on physics

Conclusion

- After 9 month of factory mode datataking one can say that DIRC proved to be a very reliable, easy to operate detector: no major problems, 100% time operational, 99.6% PMTs are alive, very stable timing per channel(jitter < 0.5ns/year)
- performance "per photon" is within 10% of the design, <u>preliminary average</u> performance "per track" expressed in terms of π/K separation is the following: 8.1 σ at 2.0 GeV/c, 3.1 σ at 3.0 GeV/c and 2.3 σ at 4.0 GeV/c. For pions the eff. is ~95% with 2–5% K–to– π fake rates. Improvements are expected from better alignment, more clean control samples with higher statistics.
- with PEPII currents being close to their nominal values(LER: 1.0Amp (2.0Amp), HER: 0.6 (0.7Amp)) machine background puts a load on DAQ while having no affect on the reconstruction
- •DIRC plays a major role in empowering BaBar combined PID, which opens new exciting opportunities for particle physics

